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Robust predictions of ecosystem responses to climate change are challenging. To
achieve such predictions, ecology has extensively relied on the assumption that
community states and dynamics are at equilibrium with climate. However, empirical
evidence from Quaternary and contemporary data suggest that species communities
rarely follow equilibrium dynamics with climate change. This discrepancy between the
conceptual foundation of many predictive models and observed community dynamics
casts doubts on our ability to successfully predict future community states. Here we
used community response diagrams (CRDs) to empirically investigate the occurrence
of different classes of disequilibrium responses in plant communities during the Late
Quaternary, and bird communities during modern climate warming in North America.
We documented a large variability in types of responses including alternate states,
suggesting that equilibrium dynamics are not the most common type of response to
climate change. Bird responses appeared less predictable to modern climate warming
than plant responses to Late Quaternary climate warming. Furthermore, we showed
that baseline climate gradients were a strong predictor of disequilibrium states, while
ecological factors such as species’ traits had a substantial, but inconsistent effect on the
deviation from equilibrium. We conclude that (1) complex temporal community dynamics
including stochastic responses, lags, and alternate states are common; (2) assuming
equilibrium dynamics to predict biodiversity responses to future climate changes may
lead to unsuccessful predictions.

Keywords: predictive ecology, global changes, anthropocene, holocene, plants, birds, equilibrium dynamics,
lagged responses

INTRODUCTION

Contemporary climate change impacts the dynamics of biodiversity (Parmesan, 2006; Steinbauer
et al, 2018) but our ability to predict these impacts remains limited. Many fields of ecology have
historically relied on the concept of equilibrium to study and forecast the responses of biodiversity
to climate change. The dynamic equilibrium hypothesis assumes that species distributions and
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FIGURE 3 | Distributions (left panels) and maps (right panels) of summary statistics (A,B: absolute deviation A; C,D: deviation change dA; E,F: maximum state
number, n) estimated from CRD for plants (A,C,E) and birds (B,D,F). Colors correspond to the statistics value, as shown in distributions. Broken black lines represent
expectation from no-lag scenario.
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FIGURE 4 | Effect of predictors on plant (A) and bird (B) summary statistics (absolute deviation A, left panel; deviation change dA, middle panel, maximum state
number n, right panel), estimated as linear coefficients (£ 95% confidence intervals) from generalized additive mixed models. Topography and Human Density were
square-root transformed. All predictors were scaled to mean = 0 and SD = 1 prior to modeling to ease comparisons. Point and bar colors indicate the significance
level associated to the test (light green: non-significant; light blue: significant at o = 5%; dark blue: significant at o = 1%).

Birds

Scenarios of Responses

Bird communities generally exhibited non-directional and
stochastic dynamics in climate responses between 1966 and
2011. A few communities (1.4%) showed no-mismatch or
low-mismatch dynamics, where relationships between inferred
community and observed temperature are linear and close to the

1:1 line. These communities were characterized by A<2°C, =20
< dA <20°CKa~!, and n = 1 (Figure 2E). A few communities
(3.4%) showed approximately constant-relationship dynamics,
where increases in temperature lead to monotonic and non-linear
change in community-inferred temperature. These communities
were characterized by A>2°C, dA < —20°C.Ka~! and n =
1 (Figure 2F). A few communities (2%) showed approximately
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constant-lag or stochastic dynamics with partial or complete
loops. These communities were characterized by —20 < dA
< 20°C.Ka™!, and n >1 (Figure 2G). However, many bird
communities (c. 60%) exhibited non-directional and stochastic
dynamics of response to observed temperatures (strong absolute
deviation and low deviation change) with n = 1 (Figure 2H).
Such stochastic dynamics associated with low state number are
mainly due to the correction applied to the estimation of #, and
are hard to identify (see Figure $4).

Summary Statistics
Bird communities showed a consistent deviation from climate
equilibrium (A = 2.41 4 1.86°C, Figure 3). A was structured
in space, with higher values of A in the south-eastern part of
North America. On average, equilibrium states did not change
in the bird communities between 1966 and 2011 (dA =10.06 £+
19.64°C.Ka~!). However, 73.2% of the sites did show positive d A
values (e.g., an increase in climatic disequilibrium). The lowest
negative values of dA were present in Western North America,
while positive values were generally distributed in south-eastern
North America.

Ninety-eight percent of the sites had a maximum state number
n = 1, indicating that predictability is reachable for a large part of
the communities. However, over this interval there was limited
directional change in climate (see CRD), which would also be
consistent with slow but stochastic dynamics. The low n value was
mainly due to the correction we applied to take into account the
strong stochasticity associated with these dynamics (see sections
Methods-Community Response Diagrams and Discussion). On
average, the uncorrected n value was strong (mean + sd = 3.2 £+
0.76), with 99% of sites having n > 1 and 88% of sites having n >
2. The max state number 7 did not exhibit any spatial pattern.

Factors Structuring Equilibrium Dynamics

Absolute deviation A increased with increasing baseline
temperature (Baseline.Climate coefficient = 1.17 £ 0.054 SE, z
= 21.51, P < 0.001**, Figure 4B, left panel), with saturation
on coldest conditions (Baseline.Climate? coefficient = 0.54 +
0.0304, z = 14.19, P < 0.001***, Figure 4B, left panel). A
increased with decreasing topography (Topography coefficient
—0.16 £ 0.045, z = —3.72, " P < 0.001) and increasing
mean body mass (Body mass coeflicient = 0.106 + 0.0275 SE,
z = 4.12, ™ P < 0.001). The geographic splines smooth terms
were significantly improving the fit of the model (edf = 45.26, F
= 26.79, ¥*P < 0.001). The full model explained 93.4% of the
deviance (81.6% without geographical spline). Overall, deviation
from equilibrium state was generally higher for bird communities
situated in warmer and mountainous areas with high human
influence and those composed of larger species.

Deviation change dA decreased with increasing baseline
temperature (Baseline.Climate coefficient = —8.45 £ 1.62, z =
—6.13, **P < 0.001, Figure 4A, mid panel). Furthermore, dA
slightly decreased (effect significant at o = 10%) with increasing
topography (Topography coefficient = —2.33 £ 1.31,z = —1.77,
P = 0.076 ns). The geographic splines smooth terms were
significantly improving the fit of the model (edf = 40.97, F = 5.84,
P < 0.001). The full model explained 44.5% of the deviance

(17.7% without geographical spline). Deviation from equilibrium
state decreased through time for bird communities situated in
warmer, mountainous areas, and composed of higher proportion
of migratory birds.

Maximum state number n was not related with any of
our predictors (Figure 4B, right panel). The geographic splines
smooth terms were not improving the fit of the model (edf =
0, Chisq = 0, P = 1). The full model explained 2.3% of the
deviance (1% without geographical spline).

DISCUSSION

We explored the limits and the determinants of predictability
in community responses to climate change in bird and plant
assemblages using CRDs. Currently, anticipatory prediction of
biodiversity responses to climate change have considered a
limited range of dynamics, relying on predictable relationships
between species or community dynamics and climate change.
While the no-lag equilibrium hypothesis is the implicit
foundation of species distribution modeling (Peterson et al.,
2011), only recent extensions of this method has successfully
considered constant lag or constant relationship by incorporating
dispersal limitation and/or properties of species assemblages
(Guisan and Rahbek, 2011; Zurell et al., 2016). We here provided
potential evidence for all types of community dynamics (see
Box 1), including unpredictable dynamics (e.g., alternate states
and stochastic dynamics) which are often not considered in
current modeling approaches. Our work suggests that the current
understanding of community dynamics in relation to climate
change is oversimplified. Among the responses described in our
study, equilibrium dynamics were the exception rather than
the norm. This result challenges the equilibrium dynamic as
the fundamental concept for predictive models of biodiversity
response to climate change.

Along with the equilibrium dynamics hypothesis, the space-
for-time substitution approach has often been used to predict the
effects of climate change on biodiversity. Although this assumed
equivalence may be relevant in situations where equilibrium
dynamics prevails (Walker et al., 2010), many studies have
emphasized substantial differences between spatial and temporal
responses (Johnson and Miyanishi, 2008). Our work suggests
that because many community dynamics are diverging from
equilibrium, the space-for-time substitution approach should be
used with caution to infer future community state. Temporal
dynamics might provide fundamentally different insights than
spatial patterns (Bonthoux et al., 2013; Bjorkman et al., 2018).
While ecology is undergoing a major transformation to leverage
and synthesize more spatial datasets (Hampton et al., 2013), time-
series data and analysis are more than ever needed to reach
a better understanding and predictability of non-equilibrium
biodiversity responses to climate change.

For plants, the most common type of dynamics reported were
constant-relationship scenarios. Such dynamics were impaired
with strong lagged responses. The current distribution of North
American plants are heavily affected by climatic conditions
at the Last Glacial Maximum (Ordonez, 2013), and plants
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are known to show dispersal lags in post-glaciated areas
(Normand et al, 2011). This explains the persistence of
deviation in responses between observed and inferred climate
in North American plant communities across the last 21 Ka.
Constant-relationship scenarios responses might be predictable
by modeling approaches considering dispersal and community
assembly rules (Guisan and Rahbek, 2011). However, almost
a quarter of the plant communities exhibited unpredictable
dynamics such as constant-lag and alternate stable states.

Bird communities mainly exhibited unpredictable dynamics.
Community dynamics appeared stochastic, and often
uncorrelated with the observed climate. Despite the fact
that maximum temperature change was generally not strong or
directional (see Figure S5), the complex disequilibrium observed
in bird communities compared to the plant communities is
in line with our expectations. Two reasons can explain the
stochasticity observed in bird responses to modern climate
change. Firstly, climatic determinism of northern hemisphere
bird communities is questionable (Beale et al., 2008; Currie and
Venne, 2017). For example, broad thermal tolerances (Araujo
et al.,, 2013) and phenological responses (Stenseth et al., 2002;
Dunn and Winkler, 2010) might buffer the impact of moderate
temperature changes on communities dynamics (Gatizere et al.,
2015). Moreover, bird sensitivity to habitat changes probably
influences community-inferred temperatures (Clavero et al,
2011; Barnagaud et al, 2013) and overrides the direct effect
of climate warming on community dynamics (Eglington and
Pearce-Higgins, 2012; Gaget et al., 2018).

Secondly, short-term variation might be harder to predict than
long-term changes because stochastic variability is predominant
at fine spatial and temporal scales (Levin, 1992). However,
consistent short-term directional changes in bird community-
inferred temperature have been reported at continental (Devictor
et al., 2012; Princé and Zuckerberg, 2015), national (Devictor
et al., 2008), and landscape scales (Gatizere et al., 2015).
Our results showed that local-scale changes in community-
inferred temperature were not consistently related to observed
temperature change. The scale of effect is defined as the scale
at which an environmental attribute has the strongest effect on
inferred species-environment relationship. While it is known as
a strong determinant of explanatory predictions (Holland et al.,
2004; de Knegt et al., 2010), many empirical studies might not be
conducted at the appropriate spatial scales (Jackson and Fahrig,
2015). Hence, we can hypothesize that the low predictability
exhibited by breeding bird communities might be due to the
weak climatic determinism of bird community dynamics at local
scale. This suggest that using equilibrium dynamics hypothesis as
a conceptual model to predict biodiversity responses to climate
change requires caution. We argue that a careful assessment of
climate determinism focused on the taxon and the scale of study
is a prerequisite for successful anticipatory predictions.

We also showed that some aspects of predictability—absolute
deviation from climate equilibrium and deviation change—
were structured by environmental or ecological factors, while
others—number of alternate states—were not. We expected
community predictability to decrease with thermal severity. Our
results showed that absolute deviation of plant communities

was decreasing with temperature, with a curvilinear relationship
showing a plateau on warmest values. Conversely, absolute
deviation for birds was increasing with increasing temperature
before reaching a plateau. This apparent discrepancy between
plants and birds is linked to the distribution of Neotoma and
BBS sites. Neotoma sites are distributed in northwestern Nearctic
margin and are therefore colder than BBS sites distributed
in southern Nearctic margin. Merging the BBS and Neotoma
estimates showed a quadratic relationship between absolute
deviation and baseline temperature (Figure S6). As expected,
overall absolute deviation increased with coldest and warmest
temperature. The consistent effect of baseline climate between
taxa and spatial scale suggest a strong regional-scale determinism
of predictability, structured by the diversity of realized thermal
niches in the regional species pool. In France, Bertrand et al.
(2016) already reported a strong effect of baseline temperature
on deviation from equilibrium state, in link with the absence
of climate-adapted species in the regional pool. Climate severity
is expected to have an even stronger effect in North America.
The distribution of land masses constrains Neartic species’
distribution range in their northern and southern boundaries.
These geometric constraints on species distribution, also called
“mid-domain effect,” are known to shape latitudinal richness
gradient (Colwell and Lees, 2000). While its application to
non-spatial domains is scarce (but see Letten et al., 2013), the
“thermal mid-domain effect” probably have a strong influence
on the species’ thermal tolerance present in regional species
pools (Brayard et al, 2005; Beaugrand et al, 2013). This
suggest that long-term biogeographic history and macro-scale
processes have a strong influence on community predictability.
Further investigations of the thermal mid-domain effect and its
consequence on regional pools should clarify its implication in
the predictability of community responses to climate change.

Our analysis showed that plant communities composed of
taller plants exhibited lower absolute deviation from climate
equilibrium. This result is in line with our predictions. No-
lag dynamics and predictable responses are thought to occur
when species exhibit low persistence through rapid extinction
at trailing range edges (Hampe and Petit, 2005), and/or efficient
niche tracking through long-distance dispersal. Conversely,
disequilibrium responses are thought to occur when species’
responses in these domains are opposite (Svenning and Sandel,
2013). In turn, the importance of these processes is linked to
species’ dispersal ability and life-history traits. For example,
species traits related to weak dispersal ability decrease species’
niche tracking (Svenning and Skov, 2007) while persistence
processes are enhanced by survival of long-lived individuals
(Eriksson, 1996; Holt, 2009; Jackson and Sax, 2010). However,
we did not find support for the effect of seed mass on the
predictability. While lower seed mass is generally considered
as a proxy for longer dispersal distance, empirical evidence is
mixed (Thomson et al., 2011). Plant height might even be better
predictor for seed dispersal distance (Muller-Landau et al., 2008;
Thomson et al., 2011). Because dispersal limitation is expected to
be a major driver of climate disequilibrium for plants (Svenning
and Skov, 2007, but see Bertrand et al.,, 2016), the improved
dispersal of taller plants supported our result.
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For birds we showed that, as predicted, communities
composed of larger birds exhibited stronger absolute deviation.
Despite the fact that body mass is an integrative species
characteristic correlated with many life-history traits, this result
confirms that life history traits can influence birds responses
through niche tracking and persistence processes (Jiguet et al.,
2007). Note that side analyses incorporated the percent of
insectivorous birds species as a potential determinant of
predictability (Figure S7). This predictor was removed from our
final model to keep consistency between plant and bird analyses.

Nevertheless, the influence of species characteristics was
generally weak, and not consistent across taxa and CRD statistics.
While trait might be good predictors for population responses
to climate change (e.g., Julliard et al., 2003; Jiguet et al., 2007),
there is weak support for their effect on species’ distribution range
shifts (Angert et al., 2011; Tingley et al., 2012; Smith et al., 2013).
Different reasons such as the stochastic nature of colonization
events, novel species interactions and extrinsic effects of habitat
availability and fragmentation might explain these weak effects.
Moreover, the properties of species assemblages and assembly
rules might be more important for community scale dynamics
(Guisan and Rahbek, 2011).

Our set of predictors failed to explain variation in
maximum state number. This statistic is a key component
of predictability. However, accounting for sampling error
challenges a straightforward interpretation of n-values when
applied to stochastic dynamics. Without sampling error,
stochastic dynamics are expected to cause high n values
associated with low predictability. For birds, the uncorrected
n values were, indeed, high (99% of the sites having n > 1 and
88% of the sites having n > 2), but the necessary correction
starkly reduced this estimate (14% of the sites having n > 1 after
correcting for sampling uncertainty).

CONCLUSION

A better understanding of the limits to predictability is a crucial
step for predictive modeling and applied ecology (Mouquet
et al.,, 2015). Our study showed that the equilibrium dynamic
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